

Московский государственный университет им. М.В.Ломоносова

Лабораторный практикум по общей физике

Электричество и магнетизм

ФАЗОВЫЕ СООТНОШЕНИЯ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

MOCKBA 2008

Фазовые соотношения в цепях переменного тока

Цель работы

Изучение характера изменения амплитуды и фазы напряжения в простых радиофизических устройствах, состоящих из R- и C-элементов.

Экспериментальная установка

Для подготовки к выполнению экспериментальных исследований следует прочитать:

Экспериментальные исследования

Исследование амплитудных и фазовых соотношений в электрических цепях проводится на установке, схема которой представлена на рис. 1. В состав установки входят: персональный компьютер, учебная плата и блок сопряжения учебной платы с компьютером.



Рис. 1. Схема экспериментальной установки.

В состав учебной платы (ее блок-схема представлена на рис. 2) входят:

- 1. Генератор переменного напряжения регулируемой частоты (от 50 до 1000 герц) с амплитудой, равной 5 вольт, выходные клеммы которого выведены на плату и обозначены знаком-«синусоидой».
 - 2. Наборы элементов:
 - набор конденсаторов:

 $C_1 = C_2 = 0.068 \text{ мк}\Phi$; $C_3 = 2C_1 = 0.136 \text{ мк}\Phi$; $C = 0.22 \text{ мк}\Phi$;

—набор резисторов:

 $R_1 = R_2 = 15 \text{ kOm}; R_3 = R_1/2 = 7.5 \text{ kOm};$

—магазин сопротивлений на 12 позиций со следующими номиналами:

1) 0.51 кОм; 2) 1 кОм;

3) 1.5 кОм;

4) 2 κO_M;

5) 3 кОм;

6) 5 кОм;

7) 7.5 кОм;

8) 10 кОм;

9) 15.7 кОм; 10) 20 кОм; 11) 27.5 кОм; 12) 35 кОм.

—трансформатор (необходимость трансформатора будет объяснена ниже в упр. 2).

На учебной плате клеммы обозначены черными кружками

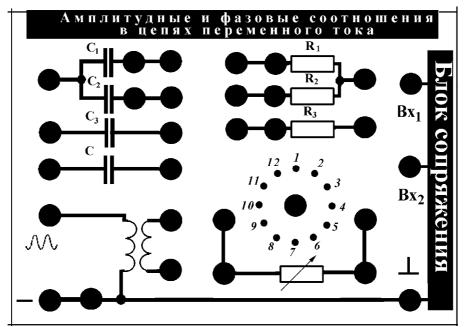


Рис. 2. Блок-схема учебной платы.

Управление работой установки осуществляется с помощью программы, запускаемой на персональном компьютере.

После загрузки программы на экране монитора появляется основное меню, содержащее следующие команды:

УПРАЖНЕНИЕ 1 УПРАЖНЕНИЕ 2 УПРАЖНЕНИЕ 3 ВЫХОД

Так как алгоритмы работы во всех упражнениях идентичны, рассмотрим подробнее один из них.

УПРАЖНЕНИЕ 1. В этом режиме осуществляется эксперимент с RC-цепочкой, для которой находятся амплитудная и фазовая характеристики. Алгоритм измерений и обработки заключается в измерении двух гармонических сигналов (входного и выходного), и в расчете отношения амплитуд этих сигналов и разности фаз между ними.

При обращении к данному пункту на экране появляется новое меню, в котором имеются как «числовые», так и «командные» окна. В «числовые» окна вводится информация о номиналах элементов схемы и о частоте генератора (она используется для расчета теоретических характеристик исследуемого устройства). «Командные» окна предусматривают проведение эксперимента и его обработку, анализ результатов всех проведенных ранее экспериментов и выход из данного режима работы.

ЭКСПЕРИМЕНТ. В этом режиме осуществляется подготовка к выполнению эксперимента и сам эксперимент. Предварительно следует собрать электрическую схему в соответствии с заданием, в качестве элементов цепочки используется конденсатор C и магазин сопротивлений R. На вход Bx_1 подается сигнал с генератора (входной сигнал), а на вход Bx_2 - с конденсатора C (выходной сигнал). Для начала эксперимента следует нажать клавишу ENTER.

Через 2-3 секунды на экране появляются графики зависимости входного и выходного напряжения от времени, представляющие собой гармонические сигналы, описываемые уравнениями:

$$U_{\text{BX}}(t) = U_{0\text{BX}} \cdot \sin(360 \cdot ft + \phi_{\text{BX}}),$$

$$U_{\text{BMX}}(t) = U_{0\text{BMX}} \cdot \sin(360 \cdot ft + \phi_{\text{BMX}}),$$
(1)

где $U_{0\text{вх}}$ и $U_{0\text{вых}}$ - соответственно амплитуды входного и выходного сигналов (в вольтах), f - частота генератора (в герцах), $\phi_{\text{вх}}$ и $\phi_{\text{вых}}$ - начальные значения фаз входного и выходного сигналов (в градусах), аргументы синусов выражаются в градусах.

По окончании эксперимента его результаты могут быть занесены в память для последующей обработки, для этого следует нажать клавишу ENTER. Если эксперимент по какимлибо причинам неудачен, его результаты не следует запоминать, для этого нажмите клавишу ESC.

Далее программа переходит к обработке результатов. Целью обработки является определение параметров входного и выходного сигналов - амплитуды, частоты и начального значения фазы, задаваемых в соответствии с видом уравнений (1). Программа предусматривает два режима обработки: «самостоятельный» и «автоматический». В самостоятельном режиме студент имеет возможность сам определять значения параметров экспериментальных данных, в автоматическом режиме значения параметров находятся компьютером.

Рассмотрим сначала работу в режиме «самостоятельный». В данном режиме на экране, кроме графиков экспериментальных зависимостей, появляется курсор в виде «креста» и два окошка, в которых показываются значения напряжения и времени в точке графика, соответствующей координатам центра «креста». Перемещения курсора осуществляются клавишами СТРЕЛКА ВПРАВО (ВЛЕВО, ВВЕРХ, ВНИЗ), при этом автоматически изменяются и значения в окошках. Для ускоренного перемещения курсора используются комбинации клавиш СТRL+ СТРЕЛКА ВПРАВО, СТRL+ СТРЕЛКА ВЛЕВО, и клавиши НОМЕ И END.

Амплитуда каждого из сигналов может быть определена по значению напряжения в точках максимумов (или минимумов). Частота определяется по результатам измерений временных координат t_1 и t_2 двух соседних максимумов (или минимумов), тогда частота $f = \frac{1}{t_2 - t_1}$.

Для определения начальной фазы колебаний поступают следующим образом. Находят на графике экспериментальной зависимости точку, соответствующую ближайшему к началу координат нулевому значению напряжения, причем в этой точке напряжение должно переходить от отрицательных значений к положительным. В соответствии с формой записи (29) временная координата t_0 этой точки будет отвечать нулевому значению аргумента синуса, т.е.

$$360 \cdot ft_0 + \varphi_0 = 0,$$

откуда начальная фаза, выраженная в градусах, равна

$$\varphi_0 = -360 \cdot ft_0.$$

Таким образом, может быть найдено значение начальной фазы для каждого из сигналов.

После определения всех искомых значений следует нажать клавишу ENTER. На экране появится числовая таблица, в которую следует внести найденное значение частоты (среднее для обоих сигналов), выраженное в герцах, отношение амплитуд выходного и входного сигналов, а также разность фаз $\phi_{\text{вых}}$ – $\phi_{\text{вх}}$, выраженную в градусах. Затем следует перейти в окно ВВЕСТИ ДАННЫЕ В ПАМЯТЬ КОМПЬЮТЕРА и нажать ENTER.

Компьютер самостоятельно определит значения параметров и сравнит их с вычисленными студентом. Если результаты совпадут с точностью не хуже 10%, то на экране появится таблица с данными компьютерной обработки, которые следует занести в память компьютера, нажав ENTER. При этом появится сообщение, что данному эксперименту присвоен номер 1. Если такого совпадения не будет, то компьютер предложит повторить обработку.

В режиме «автоматический» компьютер самостоятельно определит значения параметров: значение частоты (среднее для обоих сигналов), выраженное в герцах, отношение амплитуд выходного и входного сигналов, а также разность фаз $\phi_{\text{вых}} - \phi_{\text{вх}}$, выраженную в градусах. Эти значения заносятся в память компьютера для последующего построения графиков.

АНАЛИЗ. В этом разделе можно просмотреть результаты обработки данных для всех экспериментов, изменить некоторые из параметров (все это осуществляется в режиме, называемом **режимом просмотра данных**), а также просмотреть графики измеряемых характеристик: амплитудной и фазовой для каждого упражнения (**режим построения графиков**). При нажатии на клавишу F1 можно получить краткую информацию о списке команд, выполняемых в каждом из режимов.

При входе в раздел АНАЛИЗ программа попадает в режим просмотра данных: на экране появляется таблица, содержащая результаты обработки всех экспериментов с указанием но-

мера эксперимента и номера упражнения. Отметим, что в таблице присутствуют результаты измерений для **всех** упражнений одновременно. В данном режиме просмотра данных возможно осуществление следующих команд:

- 1. Клавиши СТРЕЛКА ВПРАВО (ВЛЕВО) позволяют перемещаться по таблице, если число экспериментов велико и все их результаты не могут быть одновременно представлены на экране.
- 2. Клавиша DEL позволяет удалить результаты одного из экспериментов, для этого следует ввести его номер и нажать ENTER.
 - 3. Клавиша ТАВ позволяет перейти в режим построения графиков.

При переходе в **режим построения графиков** программа запрашивает номер эксперимента, для которой следует построить график амплитудной зависимости. В дальнейшем в этом режиме возможно осуществление следующих команд:

- 1. Клавиши СТРЕЛКА ВПРАВО (ВЛЕВО) позволяет переходить от построения графика амплитудной зависимости к построению графика фазовой зависимости и обратно.
- 2. Клавиша INS позволяет добавить к уже имеющимся на экране графикам еще один, указав номер упражнения. Каждый из графиков изображен своим цветом, справа от области графиков таким же цветом указан соответствующий номер упражнения.
- 3. Клавиша DEL позволяет удалить с экрана график одного из упражнений, для этого следует ввести его номер и нажать ENTER.
- 4. Клавиша НОМЕ позволяет построить график теоретической зависимости и сравнить его с результатами эксперимента. Так как величины используемых в схеме элементов могут несколько отличаться от номинальных (гарантированная точность при производстве составляет 5-10 процентов), то сравнение экспериментальных и теоретических данных позволит уточнить реальные значения. Для этого следует изменить в меню режима ЭКСПЕРИМЕНТ величину емкости (считаем, что величина сопротивления известно точно), вновь перейти в режим АНАЛИЗ и посмотреть на изменение теоретической зависимости (экспериментальная зависимость не изменяемся!).
- 5. Клавиша ENTER вызывает появление курсора на экране для определения параметров представленных графиков (режим работы описан выше).
 - 6. Клавиша ТАВ позволяет перейти в режим просмотра данных.

ВЫХОД. Данный режим предусматривает, кроме выхода из программы по завершении работы (клавиша ESC), и возможность удаления результатов всех ранее выполненных экспериментов (очистка памяти компьютера) без выхода из программы. Для этого требуется нажать клавишу DEL и вернуться в программу, при этом нумерация экспериментов начнется с единицы. При отказе от выхода из программы с сохранением всех данных нажмите ENTER.

Проведение экспериментальных исследований.



Рис. 3. Электрическая схема для выполнения упражнения 1.

Изучаемая цепь показана на рис.3 Переменное напряжение U(t) от генератора подается на последовательно соединенные элементы R и C. На вход Bx_1 поступает входной сигнал U(t), на вход Bx_2 - сигнал с конденсатора C. В упражнении необходимо снять экспериментально амплитудную и фазовую характеристики RC-цепи в зависимости от величины сопротивления R (при постоянной частоте) и сравнить с рассчитанными теоретическими значениями.

Для данной цепи амплитуды входного и выходного напряжений связаны соотношением

$$K = \frac{U_{C0}}{U_0} = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}},$$
 (2)

где К - коэффициент передачи (амплитудная характеристика RC-цепи), В свою очередь, фазовый сдвиг выходного напряжения относительно входного (фазовая характеристика RC-цепи) составляет

$$tg\varphi = -\omega RC. (3)$$

Произведение $\tau = RC$ имеет размерность времени и называется постоянной времени RC-цепочки. Если τ много больше периода колебаний $\tau >> T = 2\pi / \omega$, то $\omega RC >> 1$ и сдвиг фаз близок к $-\pi/2$. В этом случае цепочка осуществляет интегрирование входной синусоиды, превращая ее в косинусоиду. В связи с этим данную схему называют интегрирующей RC-цепью.

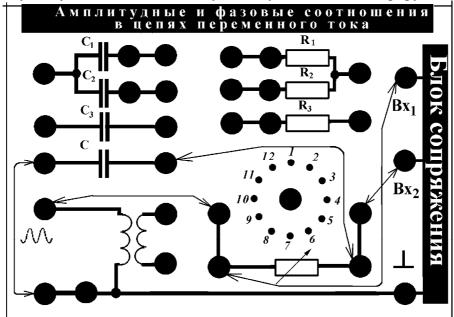


Рис. 4. Соединение элементов учебной платы для выполнения упражнения 1.

На рис. 4 показана схема соединения элементов учебной платы для выполнения измерений. В качестве емкости используется емкость C = 0.22 мк Φ , в качестве сопротивления - магазин сопротивлений R. Частота генератора задается равной 200 герц и не изменяется в ходе выполнения упражнения.

Порядок проведения измерений

- 1. Соберите схему. Установите переключатель магазина сопротивлений в положение «1». В меню упражнения 1 задайте значения всех величин: рабочей частоты, емкости и сопротивления магазина в положении «1».
- 2. В режиме ЭКСПЕРИМЕНТ проведите измерения и обработку. Найденные значения отношения амплитуд и разности фаз запишите в тетрадь. Это же данные сохраняются в памяти компьютера.
- 3. Повторите измерения пп. 1 и 2 для всех 12 положений переключателя магазина сопротивлений.
- 4. В режиме АНАЛИЗ посмотрите получившиеся экспериментальные зависимости и сравните их с теоретическими (описание данного режима работы было приведено ранее). Если наблюдается расхождение результатов, то, меняя в меню режима ЭКСПЕРИМЕНТ значение емкости, добейтесь соответствия. Запишите получившееся значение емкости.
- 5. Зарисуйте в тетради качественно получившиеся графики амплитудной и фазовой зависимостей. Рассчитайте самостоятельно по формулам (2) и (3) теоретические зависимости и на миллиметровой бумаге постройте экспериментальные и теоретические графики.

Упражнение 2. Фазовращатель

В данном упражнении изучается цепь из RC-элементов, которая позволяет изменять сдвиг фазы выходного напряжения относительно входного на произвольный угол от 0° до -

 180° , сохраняя неизменной амплитуду выходного сигнала (рис. 5a). Схема представляет собой четырехплечный мостик (обычно R_1 = R_2), в одну диагональ которого подается входное напряжение $U_{\rm Bx} = U_0 \cdot \sin \omega t$, а с другой снимается выходное напряжение

$$U_{\text{Bbix}} = \frac{U_0}{2} \cdot \sin(\omega t + \varphi) , \qquad (4)$$

запаздывающее по фазе относительно входного на угол

$$\varphi = -\pi + 2\operatorname{arctg} \frac{1}{\omega RC} \,. \tag{5}$$

При R=0 имеет место $\phi=0$, при $R=1/\omega C$ $\phi=-\pi/2$, а при $R\to\infty$ $\phi\to-\pi$. Наглядно это можно показать из векторной диаграммы схемы фазовращателя (рис. 56). Отрезок ab изображает напряжение на входе $U_{\rm Bx}$, равное сумме двух совпадающих по фазе напряжений U_{R1} и U_{R2} на резисторах R_1 и R_2 . Это же напряжение приложено и к правой ветви моста — цепочке RC. Напряжение $U_{\rm C}$, действующее на конденсаторе, отстает по фазе на $\pi/2$ от тока в данной ветви, следовательно, и от напряжения $U_{\rm R}$. Поэтому векторы $U_{\rm C}$ и $U_{\rm R}$ всегда взаимно перпендикулярны, а в сумме дают постоянную величину — вектор $U_{\rm Bx}$. В связи с этим начало вектора $U_{\rm R}$ —точка ε — всегда лежит на дуге полуокружности, опирающейся на $U_{\rm Bx}$ как на диаметр, и при изменении R перемещается по данной окружности. Выходное напряжение $U_{\rm Bhx}$ представляет собой вектор между точками ε и ε и является радиусом данной окружности. Поэтому его величина всегда постоянна при любом фазовом сдвиге ε . При изменении ε от 0 до ε вектор ε вектор ε поворачивается от ε од оф ε от относительно ε от ε относительно ε от ε относительно ε от ε относительно ε относительно ε от ε относительно ε от ε относительно ε относительно ε от ε относительно ε относительно ε относительно ε относительно ε от ε относительно ε отно

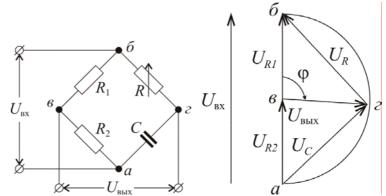


Рис. 5. Схема фазовращателя (a) и векторная диаграмма напряжений в нем (δ).

Особенностью фазовращателя мостикового типа является то, что у него вход и выход не имеют общей точки. Это в ряде случаев затрудняет его включение в более сложные схемы, элементы которой имеют общую точку (землю).

В предлагаемом упражнении нужно измерить зависимость от R сдвига фазы выходного напряжения $\varphi(R)$ и сопоставить ее с рассчитанной теоретической зависимостью.

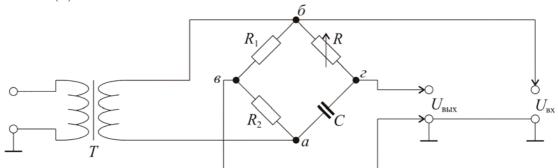


Рис. 6. Схема подключения фазовращателя.

На рис. 6 показана схема подключения фазовращателя. Вертикальная диагональ моста присоединяется к генератору через симметризующий трансформатор T. Он необходим потому, что фазовращательная цепочка не имеет общей точки для входа и выхода, а в используемом генераторе один из сигнальных контактов связан с заземленным корпусом приборов и является поэтому общим. Трансформатор T изолирует выходной сигнал генератора от земли. Если ис-

пользовать генератор с симметричным выходом, у которого ни один из выходных контактов не связан с землей, необходимость в трансформаторе T исчезает.

Так как сопротивления R_1 и R_2 равны, то амплитуда напряжения на R_1 равна $U_0/2$. Для $U_{\text{вых}}$ справедлива формула (4), а так как точка s соединена с землей, то коэффициент передачи фазовращателя $K = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ (его амплитудная характеристика) всегда равен единице. Для фазовой характеристики фазовращателя справедлива формула (5).

На рис. 7 показана схема соединения элементов учебной платы для выполнения измерений. В качестве емкости используется емкость C = 0.22 мк Φ , в качестве сопротивлений - равные сопротивления $R_1 = R_2 = 15$ кОм, в качестве переменного сопротивления - магазин сопротивлений R. Частота генератора задается равной 200 герц и не изменяется в ходе выполнения упражнения.

Порядок проведения измерений

- 1. Соберите схему. Установите переключатель магазина сопротивлений в положение «1». В меню упражнения 1 задайте значения всех величин: рабочей частоты, емкости, равных сопротивлений и сопротивления магазина в положении «1».
- 2. В режиме ЭКСПЕРИМЕНТ проведите измерения и обработку. Найденные значения отношения амплитуд и разности фаз запишите в тетрадь. Это же данные сохраняются в памяти компьютера.
- 3. Повторите измерения пп. 1 и 2 для всех 12 положений переключателя магазина сопротивлений.
- 4. В режиме АНАЛИЗ посмотрите получившиеся экспериментальные зависимости и сравните их с теоретическими (описание данного режима работы было приведено ранее). Если наблюдается расхождение результатов, то, меняя в меню режима ЭКСПЕРИМЕНТ значение емкости, добейтесь соответствия. Запишите получившееся значение емкости.

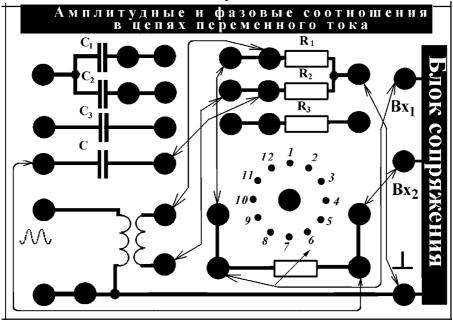


Рис. 7. Соединение элементов учебной платы для выполнения упражнения 2.

5. Зарисуйте в тетради качественно получившиеся графики амплитудной и фазовой зависимостей. Рассчитайте самостоятельно по формуле (5) теоретическую зависимость и на миллиметровой бумаге постройте экспериментальный и теоретический графики.

Упражнение 3. Двойной Т-мост

Коэффициент передачи напряжения RC-цепью зависит от частоты переменного тока. Это обстоятельство позволяет использовать RC-цепи в качестве частотных фильтров, которые пропускают (или не пропускают) ток в определенной области частот.

Следует отметить, что на низких частотах применение LC-контуров в качестве фильтров нерационально, так как габариты и стоимость необходимых катушек индуктивности и конденсаторов становятся слишком велики. В этом диапазоне удобно использовать избирательные свойства RC-фильтров.

Частотно-избирательные RC-системы широко применяются в современной радиотехнике и электронике. Уже простейшая RC-цепь является фильтром, что следует из ее частотной характеристики. Если снимать выходное напряжение с конденсатора, получится фильтр, пропускающий нижние частоты, а если с резистора - высокие. Но избирательные свойства таких фильтров низки.

Больший практический интерес представляет так называемый двойной T-мост, обладающий более высокой избирательностью. Схема такого моста показана на рис. 8a. Чаще всего на практике применяются симметричные мосты, для параметров которых выполняются соотношения

$$C_1 = C_2;$$
 $C_3 = 2 C_1;$ $R_1 = R_2;$ $R_3 = R_1/2.$ (6)

которые соответствуют максимальной частотной избирательности.

Составляющие его элементы образуют две параллельно соединенные цепи в виде буквы T. Частотная зависимость коэффициента пропускания фильтра показана на рис. 8δ . Из нее видно, что при некоторой критической частоте $f_{\rm kp}$ коэффициент передачи K обращается в нуль. При удалении от $f_{\rm kp}$ коэффициент передачи достаточно резко возрастает, стремясь к единице на очень малых и очень больших частотах. Таким образом, двойной T-мост является полосно-заграждающиим фильтром для частот, близких к $f_{\rm kp}$. В логарифмическом масштабе оси частот характеристика фильтра симметрична.

Анализ схемы двойного T-моста в общем виде довольно громоздок. Качественно можно сказать, что на малых частотах передача сигнала осуществляется через резисторы $R_1 = R_2$, так как сопротивление конденсаторов на низких частотах велико. На больших частотах, когда реактивное сопротивление конденсаторов становится значительно меньше, чем сопротивление резисторов, передача преимущественно происходит через конденсаторы $C_1 = C_2$.

Из решений уравнений Кирхгофа для симметричного T-моста для случая холостого хода (т.е. когда сопротивление нагрузки на выходе моста бесконечно велико) получается следующий комплексный коэффициент передачи

$$\hat{K} = \frac{1}{1 + i \frac{4\omega RC}{1 - \omega^2 R^2 C^2}} \qquad , \tag{7}$$

где $R=R_1=R_2$; а $C=C_1=C_2$

Модуль коэффициента передачи К имеет вид:

$$K = \frac{U_{\text{BMX}}}{U_{\text{BX}}} = \frac{1 - \omega^2 R^2 C^2}{\sqrt{1 + 14\omega^2 R^2 C^2 + \omega^4 R^4 C^4}}.$$
 (8)

Из (8) видно, что частота настройки моста, соответствующая условию K=0, составляет

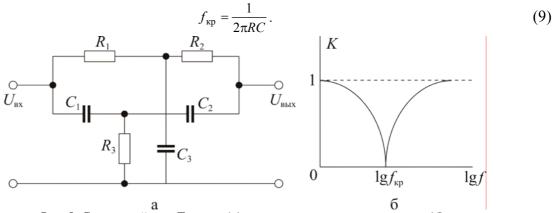


Рис. 8. Схема двойного Т-моста (a) и его частотная характеристика (δ).

Изменяя параметры моста, можно перестроить его на разные частоты и регулировать полосу пропускания.

Для разности фаз справедлива формула:

$$tgp = -\frac{4\omega RC}{1 - \omega^2 R^2 C^2} \,. \tag{10}$$

В данном упражнении необходимо снять экспериментально зависимость коэффициента передачи моста $K_{\text{эксп}}$ (f), а также рассчитать эту зависимость теоретически, исходя из известных параметров цепи.

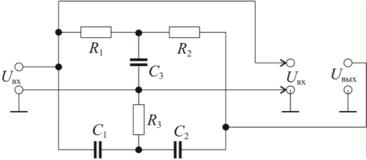


Рис. 9. Схема подключения двойного Т-моста.

На рис. 9 показана схема подключения двойного Т-моста, а на рис. 10 приведена схема соединения элементов учебной платы для выполнения измерений. В качестве емкостей используются емкости C_1 = C_2 =0.068 мкФ, C_3 =2 C_2 =0.136 мкФ в качестве сопротивлений - сопротивления R_1 = R_2 =15 кОм, R_3 = R_2 /2=7.5 кОм. Частота генератора изменяется в диапазоне от 50 до 1000 герц.

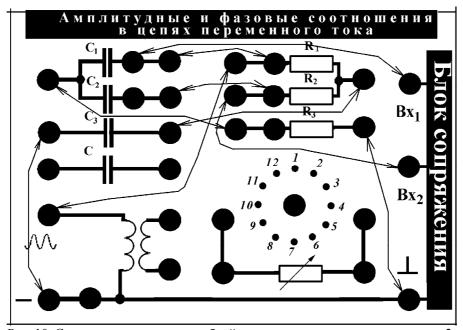


Рис. 10. Соединение элементов учебной платы для выполнения упражнения 2.

Порядок проведения измерений

- 1. Соберите схему. В меню упражнения 3 задайте значения всех неизменяемых в ходе упражнения величин: емкостей и сопротивлений.
- 2. Выберите произвольную частоту генератора. В режиме ЭКСПЕРИМЕНТ проведите измерения и обработку. Найденные для данной частоты значения отношения амплитуд и разности фаз запишите в тетрадь. Это же данные сохраняются в памяти компьютера.
- 3. Повторите измерения пп. 1 и 2, изменяя частоту генератора в диапазоне от 50 до 1000 герц. Особенно тщательно следует проводить измерения в области критической частоты f_{KD} .
- 4. В режиме АНАЛИЗ посмотрите получившиеся экспериментальные зависимости и сравните их с теоретическими (описание данного режима работы было приведено ранее). Если наблюдается расхождение результатов, то, меняя в меню режима ЭКСПЕРИМЕНТ значение емкости, добейтесь соответствия. Запишите получившееся значение емкости.

5. Зарисуйте в тетради качественно получившиеся графики амплитудной и фазовой зависимостей. Рассчитайте самостоятельно по формулам (8) и (10) теоретические зависимости для каждого значения частоты и на миллиметровой бумаге постройте экспериментальные и теоретические графики.

Литература

- 1. Матвеев А.Н. Электричество и магнетизм. М: Высшая школа, 1983, § 48, 54, 55.
- 2. Калашников С.Г. Электричество. М: Наука, 1985, § 218-220, 228.
- 3. Сивухин Д.В. Общий курс физики. Электричество. М: Наука, 1983, §§ 123, 126, 129-131.