Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова филиал МГУ в г. Севастополе факультет компьютерной математики кафедра программирования

УТВЕРЖДАЮ
Директор
Филиана МРУ в г. Севастополе
О.А. Шпырко
«15» / имие 20 го г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Наименование дисциплины (модуля):

ОПЕРАЦИОННЫЕ СИСТЕМЫ

код и наименование дисциплины (модуля)

Уровень высшего образования:

бакалавриат

Направление подготовки:

01.03.02 Прикладная математика и информатика

(код и название направления/специальности)

Направленность (профиль) ОПОП:

общий

(если дисциплина (модуль) относится к вариативной части программы)

Форма обучения

очная

Рабочая программа рассмотрена на заседании кафедры программирования протокол № 3 от «28 » е ураля 2020 г. Руководитель ОП 01.03.02 «Прикладная

математика и информатика»

(Н. В. Лактионова)

(подпись)

Рабочая программа одобрена Методическим советом Филиала МГУ в г.Севастополе

Протокол № 6 от «10» июия 2020 г.

(А.В. Мартынкин)

(подиись)

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 01.03.02 «Прикладная математика и информатика» в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение 2016,2017,2018

курс — II семестры — 3 зачетных единиц — 3 академических часов — 108, в т.ч.: лекций — 54 часа практических занятий — нет Формы промежуточной аттестации: зачёты в семестрах — нет Форма итоговой аттестации: экзамен в 3 семестре.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	
2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ	7
3. РЕКОМЕНДУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	
4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ	і РАБОТЫ
СТУДЕНТОВ	11
5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕ	СПЕЧЕНИЕ
ДИСЦИПЛИНЫ	15
6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	16
ПРИ ПОЖЕНИЕ А	17

ВВЕДЕНИЕ

1. Цель и задачи освоения дисциплины

Целью освоения дисциплины «Операционные системы» является:

ознакомить студентов с одним из ключевых понятий, связанных с функционированием компьютеров и их программного обеспечения – понятию операционная система.

Основные задачи дисциплины:

– рассмотреть базовые понятия и определения, связанные операционными системами, рассматривается состав основных компонентов операционной системы и их функционирование, взаимосвязь с аппаратурой компьютеров. Изучить некоторые вопросы планирования ресурсов в операционных системах, а также программный интерфейс системных вызовов для организации взаимодействия операционной системы и пользовательской программы. На примере операционных систем удовлетворяющих стандарту POSIX, приводятся упрощённые примеры реализации некоторых основных компонентов ОС.

2. Место дисциплины в структуре ООП

Дисциплина «Операционные системы» входит в общепрофессиональный блок базовой части ОС МГУ по направлению подготовки 010400.62 «Прикладная математика и информатика». Логически и содержательно-методически данная дисциплина связана базовыми курсами: «Алгоритмические языки» и «Архитектура ЭВМ и язык Ассемблера» модуля «Информатика».

Курс поддерживается дисциплиной Учебная практика (Практикум на ЭВМ) входящей в блок Практики и научно-исследовательчкая работа вариативной части ОС МГУ по направлению подготовки 010400.62 «Прикладная математика и информатика». Учебная практика «Практикум на ЭВМ» включает в себя как семинарские занятия, так и практическое выполнение заданий на ЭВМ.

Для успешного освоения дисциплины «Операционные системы» студент должен обладать основами знаний по информатике и математике в рамках школьной программы и успешно освоить предшествующие дисциплины первого курса: «Алгоритмы и алгоритмические языки» и «Архитектура ЭВМ и язык Ассемблера» модуля «Информатика».

3. Требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен:

Знать:

- архитектуру вычислительной системы, компьютеров и операционных систем;
- основные концепции управления процессами, реализацию процессов в ОС UNIX, планирование и взаимодействие процессов;
- базовые средства реализации взаимодействия процессов в ОС UNIX, IPC система межпроцессного взаимодействия, сокеты унифицированный интерфейс программирования программ взаимодействующих через сеть;
- основные концепции и примеры реализаций файловых систем;
- базовые концепции, задачи и стратегии управления оперативной памятью;
- процесс загрузки ОС UNIX, интерфейс командной строки: shell, базовый набор команд.

Уметь:

– разрабатывать системное программное обеспечения для взаимодействия с операционной системой на уровне системных вызовов; разрабатывать компоненты операционных систем;

Владеть:

 профессиональными знаниями теории операционных систем и методов разработки и реализации операционных систем, основами организации библиотеки системных вызовов.

<u>Универсальные, профессиональные и специализированные компетенции, которыми должен обладать студент в результате освоения дисциплины</u>

- владение основами алгоритмизации, понимание методов построения алгоритма на основе разбиения задачи на подзадачи (ОНК-4);
- способность создавать алгоритмические модели типовых задач, проводить спецификацию задачи, реализовывать программы на алгоритмических языках высокого уровня, оценивать сложность полученных алгоритмов (ОНК-5).

1. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

а) Общая трудоемкость дисциплины:

- 3 зачетных единицы,
- 108 академических часа. В том числе: 54 часа лекций, 54 часов самостоятельной работы

б) Тематический план

Таблица 1.

ТЕМАТИЧЕСКИЙ ПЛАН

Семестр III

№ п/п	Название темы	Количество часов Л С(П,Л6) СРС			Формы текущего контроля успеваемости (по темам) / Форма промежуточной аттестации (по семестрам)
1	2	3	4	5	6
1	Этапы развития вычислительной техники и программного обеспечения.	2			Консультации
2	Основы архитектуры вычислительной системы.	4			Консультации
3	Основы архитектуры компьютеров	4			Консультации
4	Основы архитектуры операционных систем.	4			Консультации
5	Управление процессами. Основные концепции.	2			Консультации
6	Управление процессами. Реализация процессов в ОС UNIX.	4		2	Консультации
7	Управление процессами. Планирование.	2		6	Консультации
8	Управление процессами. Взаимодействие процессов.	2		4	Консультации
9	Реализация межпроцессного взаимодействия в ОС UNIX. Базовые средства реализации взаимодействия процессов в ОС UNIX.	4		4	Консультации
10	Реализация межпроцессного взаимодействия в ОС UNIX. IPC – система межпроцессного взаимодействия.	4		4	Консультации
11	Реализация межпроцессного взаимодействия в ОС UNIX. Сокеты — унифицированный интерфейс программирования распределенных систем.	4		4	Консультации

1	2	3	4	5	6
12	Файловые системы. Основные концепции.	2		6	Консультации
13	Файловые системы. Примеры реализаций файловых систем.	4		6	Консультации
14	Управление памятью. Базовые концепции, задачи и стратегии управления оперативной памятью.	2		6	Консультации
15	Управление внешними устройства- ми. Общие концепции.	2		4	Консультации
16	Управление внешними устройствами. ОС UNIX – работа с внешними устройствами.	2		2	Консультации
17	Процесс загрузки и останова в операционных системах семейства UNIX	2		2	
18	Интерфейс командной строки в UNIX, основные команды shell	2		2	
19	Контрольная работа	2		2	
	Всего, часов 54 54				
Итоговый контроль				Экзамен - 36 часов	

где: Π – лекции, C – семинарские занятия, Π – практические занятия, Λ б – лабораторные занятия, Λ 6 – семостоятельная работа студентов.

2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

Планы лекций

Лекция 1. Этапы развития вычислительной техники и программного обеспечения.

Лекция 2. Основы архитектуры вычислительной системы.

Структура вычислительной системы: аппаратный уровень BC, управление физическими ресурсами BC, управление виртуальными ресурсами BC, операционная система, системы программирования, прикладные системы. Понятие виртуальной машины.

Лекция 3. Основы компьютерной архитектуры.

Структура и основные компоненты. Оперативное запоминающее устройство, расслоение ОЗУ, кэширование ОЗУ. Структура и функционирование центрального процессора. Аппарат прерываний. Типы внешних устройств, организация потоков данных при обмене с внешними устройствами. Организация управления внешними устройствами. Иерархия памяти. Аппаратная поддержка ОС. Мультипрограммный режим. Организация регистровой памяти ЦП – регистровые окна, стек. Виртуальная память. Сегментностраничная организация оперативной памяти. Кэширование информационных потоков на уровне аппаратуры и ОС.

Многомашинные, многопроцессорные ассоциации. Классификация архитектур по М.Флину. Терминальные комплексы. Линии связи. Каналы. Компьютерные сети. Организация сетевого взаимодействия. Эталонная модель ISO/OSI. Протокол, интерфейс, стек протоколов. Логическое взаимодействие сетевых устройств. Семейство протоколов TCP/IP, соответствие модели ISO/OSI. Взаимодействие между уровнями протоколов семейства TCP/IP. IP-адресация.

Лекция 4. Основы архитектуры операционных систем.

Базовые понятия – процесс, ресурс. Свойства ОС. Структура ОС. Ядро. Системные вызовы. Примеры структурной организации ОС – монолитные, микроядерные ОС. Логические функции ОС. Управление процессами. Управление устройствами. Управление данными. Задачи планирования. Типы ОС: пакетные ОС, ОС разделения времени, ОС реального времени. Сетевые, распределенные ОС.

Лекция 5. Управление процессами.

5.1. Основные концепции

Определение процесса. Модельная ОС. Жизненный цикл, состояния процесса. Модель пакетной однопроцессной ОС, модель пакетной мультипроцессной системы. Модель ОС с разделением времени. Основные типы процессов. "Полновесные процессы". "Легковесные процессы". Контекст процесса.

5.2. Реализация процессов в ОС UNIX

Определение. Контекст процесса. Тело процесса. Аппаратный контекст. Системный контекст. Состояния процесса. Аппарат системных вызовов в ОС UNIX. Базовые средства управления процессами в ОС UNIX (fork(), exec(), wait(), exit()...).

5.3. Планирование

Совокупность задач планирования. Планирование распределения времени ЦП между процессами – основные подходы: вытесняющие и невытесняющие стратегии; алгоритмы, основанные на квантовании (простой круговорот, алгоритмы с изменяющимся

квантом времени и т.д.); алгоритмы, использующие приоритет (планирование по наивысшему приоритету, понятие относительного и абсолютного приоритета, класс алгоритмов, использующих линейно (нелинейно) изменяющийся приоритет, очереди с обратной связью (неявный приоритет)); смешанные алгоритмы планирования. Особенности планирования в системах реального времени. Примеры: организация планирования времени ЦП в ОС UNIX.

5.4. Взаимодействие процессов

Взаимодействие параллельных процессов и их синхронизация. Классификация средств межпроцессного взаимодействия. Разделяемые ресурсы и синхронизация доступа к ним. Взаимное исключение. Тупики. Некоторые способы реализации взаимного исключения: семафоры Дейкстры, мониторы, обмен сообщениями. Классические задачи синхронизации процессов: "обедающие философы", "читатели и писатели", "спящий парикмахер".

Лекция 6. Реализация межпроцессного взаимодействия в ОС UNIX.

6.1. Базовые средства реализации взаимодействия процессов в ОС UNIX

Сигналы. Работа с сигналами. Примеры программирования (signal(), kill()). Надежные сигналы. Неименованные каналы. Примеры программирования (pipe(),dup(),read(),write()). Именованные каналы (FIFO). Примеры программирования (mkfifo()). Взаимодействие процессов по схеме "подчиненный – главный". Общая схема трассировки процессов.

6.2. ІРС – система межпроцессного взаимодействия

Общие концепции. Проблема именования разделяемых объектов. Объекты IPC. Очередь сообщений (создание, доступ, управление). Разделяемая память (создание, доступ, управление). Массив семафоров (создание, доступ, управление).

6.3. Сокеты – унифицированный интерфейс программирования программ взаимодействующих через сеть

Типы сокетов. Коммуникационный домен. Дейтаграммное соединение. Соединение с использованием виртуального канала. Схема работы с сокетами с установлением соединия. Схема работы с сокетами без установления соединения.

Лекция 7. Файловые системы.

7.1. Основные концепции

Структурная организация файлов. Атрибуты файлов. Основные правила работы с файлами. Типовые программные интерфейсы работы с файлами. Подходы в практической реализации файловой системы. Модели реализации файлов. Понятие индексного узла (дескриптора). Модели реализации каталогов. Взаимнооднозначное соответствие имени файла и содержимого файла. Координация использования пространства внешней памяти. Квотирование пространства файловой системы. Надежность файловой системы. Проверка целостности файловой системы.

7.2. Примеры реализаций файловых систем

Организация файловой системы ОС UNIX. Виды файлов. Права доступа. Логическая структура каталогов. Внутренняя организация ФС. Модель Файловая система Linux ext3 – суперблок, область индексных дескрипторов, блоки файлов, файл журнала. Работа с массивами номеров свободных блоков. Индексный дескриптор. Работа массивом свобод-

ных индексных дескрипторов. Адресация блоков файла. Файл каталог. Достоинства и недостатки реализации.

Модель файловая система FAT.

Стратегия размещения данных в различных файловых системах. Внутренняя организация блоков. Алгоритм выделения пространства для файла. Структура каталога в различных файловых системах.

Лекция 8. Управление оперативной памятью.

Базовые концепции, задачи и стратегии управления оперативной памятью. Организация управления памятью при:

- одиночном непрерывном распределении;
- распределении разделами;
- распределении перемещаемыми разделами;
- страничном распределении (таблица страниц, TLB, иерархическая организация таблицы страниц, хэширование таблицы страниц, инвертированные таблицы станиц, алгоритмы замещения страниц);
- сегментном распределении;
- сегментно-страничном распределении.

Лекция 9. Управление внешними устройствами.

9.1. Общие концепции

Архитектура организации управления внешними устройствами. Программное управление внешними устройствами. Драйверы физических и логических устройств. Буферизация обмена. Планирование дисковых обменов. Примеры алгоритмов. RAID-системы. Уровни RAID.

9.2. ОС UNIX – работа с внешними устройствами

Файлы устройств, драйверы. Системные таблицы драйверов устройств. Ситуации, вызывающие обращения к функциям драйвера. Включение, удаление драйверов в систему. Организация обмена данных с файлами. Пример. Буферизация при блокоориентированном обмене. Борьба со сбоями.

Лекция 10. Загрузка операционной системы

Начальный аппаратный этап загрузки роль BIOS или сервисного процессора, формирование начальной структуры сегментов и страниц. Понятие загрузчика операционной системы, его роль. Запуск ядра операционной системы, подгрузка драйверов устройств, формирование процесса init в UNIX. Роль процесса init. Разворачивание и остановка служб в операционной системе на примере семейства UNIX. Остановка операционной системы.

Лекция 11. Интерфейс командной строки

Понятие Shell, базовые команды. Запуск группы процессов в фоновом режиме. Перенаправление ввода-вывода, понятие терминальной линии, переменные окружения в том числе предопределённые.

3. РЕКОМЕНДУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Работа в аудитории: лекции; консультации перед экзаменом.

Процесс изложения учебного материала сопровождается презентациями и демонстрацией решения задач в интерактивном режиме.

Параллельно с чтением лекций организована учебная практика (Практикум на ЭВМ) студентов в объеме 108 часов. На учебной практике студенты выполняют индивидуальные задания, которые предназначены для закрепления теоретической части курса и получения практических навыков их применения.

<u>Внеаудиторная работа</u>: изучение пройденных на лекциях тем, самостоятельное изучение литературы по операционным системам.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

а) Оценочные средства для текущего контроля успеваемости

Пример варианта контрольной работы

- 1. Опишите структуру таблицы страниц и каталога страниц в оперативной памяти.
- 2. Опишите задачи процесса init операционной системы UNIX.
- 3. Опишите структуру индексного дескриптора в файловой системе UNIX. Каково назначение файла журнала в файловой системе.
- 4. Дайте определение системного вызова. Каково назначение системных вызовов: setpgid,getppid,waitpid,pause,alarm,ioctl?
- 5. Что означают права на каталог rwxrwtrwt и права «rwsr-sr-х root root» на файл /usr/bin/xorg. Объясните почему они необходимы.
- 6. Опишите уровни стека протоколов TCP/IP. Что является интерфейсом каждого уровня с предыдущим?
- 7. Какие элементы в аппаратуре необходимы для организации мультипрограммного режима работы операционной системы.
- 8. Что будет выдано в стандартный поток вывода следующей программой (ответ объясните):

```
#include <unistd.h>
#include <svs/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <signal.h>
char *shmem;
int main()
       int shm id;
      key t key;
      pid t pid;
      key=ftok("/bin/ls",'1')
      shm id=shmget(key,1024,IPC CREAT|0666);
       shmem=(char *)shmat(shm id,NULL,0);
      strcpy(shmem,"Les");
       printf("welcome\n Hello");
      pid=fork();
```

```
if(pid>0)
              sleep((unsigned int)random());
              sprintf(shmem,"Im father pid=%d",
                            (int)getpid());
       }
       else
              sleep((unsigned int)random());
              printf(" recv: '%s'\n",shmem);
       }
       printf(" finish\n");
       if(pid>0)
              wait(NULL);
              shmdt(shmem);
              shmctl(shm id,IPC RMID,NULL);
       }
       return 0;
}
```

Самостоятельная работа по изучению данной дисциплины включает:

- проработку теоретических основ лекционного материала;
- систематизацию изученного материала по курсу;
- научно-исследовательская работа учащегося в библиотеках;
- подготовка к устному экзамену.

б) Система итогового контроля знаний

По итогам освоения дисциплины проводится устный экзамен.

Список вопросов к экзамену

- 1. Этапы развития вычислительной техники и программного обеспечения.
- 2. Структура вычислительной системы. Ресурсы ВС -физические ресурсы, виртуальные ресурсы. Уровень операционной системы.
- 3. Структура вычислительной системы. Ресурсы ВС -физические, виртуальные. Уровень систем программирования.
- 4. Структура вычислительной системы. Ресурсы ВС -физические ресурсы, виртуальные ресурсы. Уровень прикладных системы.
- 5. Структура вычислительной системы. Понятие виртуальной машины.
- 6. Основы архитектуры компьютера. Основные компоненты и характеристики. Структура и функционирование ЦП.
- 7. Основы архитектуры компьютера. Основные компоненты и характеристики. Оперативное запоминающее устройство. Расслоение памяти.

- 8. Основы архитектуры компьютера. Основные компоненты и характеристики. Кэширование ОЗУ.
- 9. Основы архитектуры компьютера. Аппарат прерываний. Последовательность действий в вычислительной системе при обработке прерываний.
- 10. Основы архитектуры компьютера. Внешние устройства. Организация управления и потоков данных приобмене свнешними устройствами.
- 11. Основы архитектуры компьютера. Иерархия памяти.
- 12. Аппаратная поддержка ОС. Мультипрограммный режим.
- 13. Аппаратная поддержка ОС и систем программирования.. Организация регистровой памяти ЦП (регистровые окна, стек).
- 14. Аппаратная поддержка ОС. Виртуальная оперативная память.
- 15. Аппаратная поддержка ОС. Пример организации страничной виртуальной памяти.
- 16. Многомашинные, многопроцессорные ассоциации. Классификация. Примеры.
- 17. Многомашинные, многопроцессорные ассоциации. Терминальные комплексы. Компьютерные сети.
- 18. Операционные системы. Основные компоненты и логические функции. Базовые понятия: ядро, процесс, ресурс, системные вызовы. Структурная организация ОС.
- 19. Операционные системы. Пакетная ОС, ОС разделения времени, ОС реального времени, распределенные исетевые ОС.
- 20. Организация сетевого взаимодействия. Эталонная модель ISO/OSI. Протокол, интерфейс. Стек протоколов. Логическое взаимодействие сетевых устройств.
- 21. Организация сетевого взаимодействия. Семейство протоколов TCP/IP, соответствие модели ISO/OSI. Взаимодействие между уровнями протоколов семейства TCP/IP. IP адресация.
- 22. Управление процессами. Определение процесса, типы. Жизненный цикл, состояния процесса. Свопинг. Модели жизненного цикла процесса. Контекст процесса.
- 23. Реализация процессов в ОС UNIX. Определение процесса. Контекст, тело процесса. Состояния процесса. Аппарат системных вызовов в ОС UNIX.
- 24. Реализация процессов в ОС UNIX. Базовые средства управления процессами в ОС UNIX. Загрузка ОС UNIX, формирование нулевого и первого процессов.
- 25. Взаимодействие процессов. Разделяемые ресурсы. Критические секции. Взаимное исключение. Тупики.
- 26. Взаимодействие процессов. Некоторые способы реализации взаимного исключения: семафоры Дейкстры, мониторы, обмен сообщениями.
- 27. Взаимодействие процессов. Классические задачи синхронизации процессов. "Обедающие философы".
- 28. Взаимодействие процессов. Классические задачи синхронизации процессов. "Читатели и писатели".
- 29. Базовые средства взаимодействия процессов в ОС UNIX. Сигналы. Примеры программирования.
- 30. Базовые средства взаимодействия процессов в ОС UNIX. Неименованные каналы. Примеры программирования .
- 31. Базовые средства взаимодействия процессов в ОС UNIX. Именованные каналы. Примеры программирования.
- 32. Базовые средства взаимодействия процессов в ОС UNIX. Взаимодействие процессов по схеме "подчиненный-главный". Общаясхема трассировки процессов.
- 33. Система межпроцессного взаимодействия ОС UNIX. Именование разделяемых объектов. Очереди сообщений. Пример.
- 34. Система межпроцессного взаимодействия ОС UNIX . Именование разделяемых объектов. Разделяемая память. Пример.
- 35. Система межпроцессного взаимодействия ОС UNIX . Именование разделяемых объектов. Массив семафоров. Пример.
- 36. Сокеты. Типы сокетов. Коммуникационный домен. Схема работы с сокетами с установ-

лением соединения.

- 37. Сокеты. Схема работы с сокетами без установления соединения.
- 38. Общая классификация средств взаимодействия процессов в ОС UNIX.
- 39. Файловые системы. Структурная организация файлов. Атрибуты файлов. Основные правила работы с файлами. Типовые программные интерфейсы работы с файлами.
- 40. Файловые системы. Модели реализации файловых систем. Понятие индексного дескриптора.
- 41. Файловые системы. Координация использования пространства внешней памяти. Квотирование пространстваФС. Надежность ФС. Проверка целостности ФС.
- 42. Примеры реализаций файловых систем. Организация файловой системы ОС UNIX. Виды файлов. Права доступа. Логическаяструктура каталогов.
- 43. Примеры реализаций файловых систем Внутренняя организация Φ С. Модель версии UNIX SYSTEM V.
- 44. Примеры реализаций файловых систем. Внутренняя организация ФС. Принципы организации файловойсистемы FFS UNIX BSD.
- 45. Управление внешними устройствами. Архитектура организации управления внешними устройствами, основные подходы, характеристики.
- 46. Управление внешними устройствами. Планирование дисковых обменов, основныеалгоритмы.
- 47. Управление внешними устройствами. Организация RAID систем, основные решения, характеристики.
- 48. Внешние устройства в ОС UNIX. Типы устройств, файлы устройств, драйверы.
- 49. Внешние устройства в ОС UNIX. Системная организация обмена с файлами. Буферизация обменов с блокоориентированными устройствами.
- 50. Управление оперативной памятью. Одиночное непрерывное распределение. Распределение разделами. Распределение перемещаемыми разделами.
- 51. Управление оперативной памятью. Страничное распределение.
- 52. Управление оперативной памятью. Сегментное распределение.
- 53. Вычислительная система. Кэширование информационных потоков на уровняхаппаратуры иОС.
- 54. Язык программирования С. Общая характеристика. Типы, данные, классы памяти. Правила видимости. Структура программы. Препроцессор. Интерфейс с ОС UNIX.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) основная литература

- 1. В. Столлингс, «Операционные системы. Внутреннее устройство и принципы проектирования», 4 изд. Вильямс, М., 2002г. (ISBN 5-8459-0310-6 страниц: 843)
- 2. Э. Таненбаум, «Современные операционные системы», Питер, -СПб.:, 2002 г. (ISBN 5-318-00299-4, страниц: 1040)
- 3. Э. Таненбаум, «Архитектура компьютеров», -СПб.: Питер, 2002 г. (ISBN 5-318-00298-6, страниц: 704)
- 4. У.Стивенс "UNIX взаимодействие процессов", изд. Питер, 2002 г. (ISBN 5-318-00534-9, страниц: 576)
- 5. Н.В.Вдовикина, А.В.Казунин, И.В.Машечкин, А.Н.Терехин "Системное программное обеспечение взаимодействие процессов", М.,МГУ, 2002 г. (ISBN 5-89407-139-9, страниц: 184).
- 6. Э. Таненбаум, «Компьютерные сети», 3 изд. Питер, 2002г. (ISBN 5-318-00300-1, страниц: 848).
- 7. Ю.Вахалия, «Unix изнутри», -СПб.: Питер, 2003 г. (ISBN 5-94723-013-5, страниц: 844).
- 8. И.В.Машечкин, М.И.Петровский, П.Д.Скулачев, А.Н.Терехин. Системное программное обеспечение: файловые системы ОС Unix и Windows NT. Москва, Диалог-Москва, 1997г. (ISBN 5-89209-172-4, страниц: 47).
- 9. А.В.Столяров. «Введение в операционные системы» издательский отдел факультета ВМиК МГУ им. М.В.Ломоносова в 2006 г. ISBN 5-89407-246-8. http://www.stolyarov.info/books/pdf/osintro.pdf
- 10. Д. Бовет, М. Чезати «Ядро Linux» :БХВ-Петербург, 2007 г. ISBN 0-596-00565-2.
- 11. Марк Дж. Рочкинд «Программирование для UNIX 2-ое издание» БХВ-Петербург 2005г.

б) дополнительная литература

- 1. Б. Керниган, Д. Ритчи, «Язык программирования Си», 3 изд, -СПб.: «Невский Диалект», 2001 г. (ISBN 5-7940-0045-7, страниц: 352)
- 2. Н.Д. Васюкова, И.В. Машечкин и др, «Краткий конспект семинарских занятий по языку Си», изд. МГУ, М., 1999г. (ISBN 5-89407-052-X, страниц: 50)
- 3. Д.Соломон, М.Руссинович, «Внутреннее устройство MS Windows 2000. Мастер класс», СПб.: Питер; М. Издательско-торговый дом «Русская Редакция», 2001г. (ISBN 5-318-00545-4, ISBN 5-7502-0136-4 страниц: 752).
- 4. А. Робачевский, «Операционная система Unix», BHV Санкт-Петербург,1997 г. (ISBN 5-7791-0057-8, страниц: 528)
- 5. У.Р. Стивенс, Б. Феннер, Э.М. Рудофф «Unix разработка сетевых приложений» Питер: $2007 \, \Gamma$.

в) Интернет-ресурсы

- электронная учебно-методическая система «Ownlibrari» кафедры программирования Филиала МГУ в г. Севастополе.
- материалы по курсу «Операционные системы», слайды ко всем лекциям: http://jaffar.cs.msu.su/mash/os/
- Операционная среда OC UNIX для изучающих программирование http://www.stolyarov.info/books/pdf/unixref.pdf

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- библиотека Филиала МГУ в г. Севастополе;
- библиотека кафедры программирования Филиала МГУ в г. Севастополе;
- лекционная аудитория, оборудованную средствами подключения к сети электропитания и локальной сети университета, а также средствами интерактивного отображения информации для показа презентаций лекций и демонстрации решения задач;
- для самостоятельной работы студентов специализированные компьютерные классы с доступом к Интернет-ресурсам с любого компьютера.

ПОЛОЖЕНИЕ

о проведении пересдач задолженностей студентов по итоговым аттестациям на кафедре программирования Филиала МГУ в г. Севастополе прикомандированными преподавателями с факультета ВМК МГУ протокол №5 заседания кафедры от 10 апреля 2012 г.

Настоящее положение регулирует порядок проведения пересдач задолженностей студентами факультета Компьютерной математики на кафедре программирования Филиала МГУ в г. Севастополе прикомандированными преподавателями с факультета ВМК МГУ.

- 1. Пересдача задолженностей принимается по графику пересдач задолженностей, установленному кафедрой программирования в принятые ректоратом МГУ имени М.В.Ломоносова сроки, в отдельных случаях в сроки установленные комиссией по студенческим делам.
- 2. График пересдач задолженностей сообщается в учебный отдел в виде служебной записки и преподавателю факультета ВМК МГУ, по дисциплине которого проводится пересдача.
- 3. Пересдачи экзаменов (зачётов) в отсутствие преподавателей факультета ВМК в Филиале МГУ в г. Севастополе проводятся в письменной форме, независимо от того в какой форме проводился основной экзамен (зачёт).
- 4. Вариант письменной экзаменационной (зачётной) работы для пересдачи составляет преподаватель, проводивший основной экзамен. Также преподаватель указывает требования к проведению экзамена (сколько времени даётся на написание работы, какими материалами разрешается пользоваться студенту при написании работы и др.)
- 5. Кафедрой программирования назначаются местные преподаватели кафедры, которые проводят пересдачу в установленные даты и время в соответствии с графиком пересдач по присланному варианту с выполнением всех требований к проведению.
- 6. Написанные студентами при пересдаче экзаменационные (зачётные) работы сканируются по окончании пересдачи и пересылаются по электронной почте на проверку преподавателю факультета ВМК МГУ.
- 7. Преподавателю ВМК МГУ пересылается скан ведомости пересдачи для выставления отметок по результатам пересдачи.
- 8. Преподаватель ВМК присылает в Филиал скан заполненной им ведомости пересдачи и сканы проверенных им работ.
- 9. Полученный скан ведомости подписывается зам. зав. кафедрой.
- 10. Скан ведомости пересдачи сдаётся в учебный отдел Филиала.
- 11. Кафедра знакомит студентов, писавших работу на пересдаче, с результатами пересдачи.
- 12. При возникновении у студентов, писавших работу на пересдаче, вопросов по результатам проверки, студент может обратиться к преподавателю ВМК лично по электронной почте (скайпу). Свои координаты для консультаций с ним преподаватель сообщает студентам на первой лекции курса.