Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова филиал МГУ в г. Севастополе факультет естественных наук кафедра физики и геофизики УТВЕРЖДЕНО-на 20 / -20 / учебный год Методическим советом Филлала **УТВЕРЖДАЮ** Протокол № 8 от « LS» 06 20 dde Директор ектора по учебной работе Филиала 2 Севастополе О.А. Шпырко Заведующий кафедрой 20 21 r. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Наименование дисциплины (модуля): Б-ПД Введение в квантовую физику код и наименование дисциплины (модуля) Уровень высшего образования: бакалавриат Направление подготовки: 03.03.02 Физика (код и название направления/специальности) Направленность (профиль) ОПОП: обший (если дисциплина (модуль) относится к вариативной части программы) Форма обучения: очная очная, очно-заочная

Рабочая программа рассмотрена На заседании кафедры физики и геофизики Протокол №4 от «27» августа 2021 г.

Заведующий кафедрой

(подпись)

_(К.В. Показеев)

Рабочая программа одобрена Методическим советом Филиала МГУ в г. Севастополе Протокол №8 от «31» августа 2021 г. (С.А. Наличаева)

7.

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки «Физика» в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение 2016, 2017, 2018, 2019.

курс — 2

семестры — 4

зачетных единиц — 4

академических часов — 68, в т.ч.

лекций — 34 часа

практических занятий — 34 часа

Форма промежуточной аттестации:

экзамен в 4 семестре

1. Место дисциплины (модуля) в структуре ОПОП ВО.

Дисциплина «Введение в квантовую физику» входит в базовую часть профессионального цикла ОС МГУ по направлению подготовки 03.03.02 «Физика» (бакалавр)». Она является интегрированной, логически и содержательно-методически базирующейся на таких предметах, изучаемых в высшей школе, как «Общая физики», «Математический анализ» и «Аналитическая геометрия и линейная алгебра».

Кроме того, для успешного освоения дисциплины «Введение в квантовую физику» студент должен обладать основами знаний, полученных им в средней общеобразовательной школе по естественно-научным предметам (физике, математике, химии, астрономии и биологии).

2. Входные требования для освоения дисциплины (модуля), предварительные условия (если есть).

Успешное освоение дисциплин по общей физике и высшей математике.

3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Планируемые результаты обучения по дисциплине (модулю): Знать:

- основные квантово-физические понятия и термины;
- ключевые эксперименты и основные этапы развития квантовой физики;
- фундаментальные законы квантовой физики;
- основы математического аппарата квантовой механики;
- подходы к решению квантово-физических задач.

Уметь:

- мыслить квантово-физическими категориями;
- выявлять причинно-следственные связи между квантовыми природными явлениями;
- применять знания об основных квантово-физических понятиях, концепциях, теориях, закономерностях в отношении к конкретным объектам;
 - обоснованно выдвигать гипотезы и предлагать пути их проверки;
 - проводить анализ экспериментальных данных и делать выводы на их основе;
- проводить корректные оценки квантовых величин и решать квантово-физические задачи точно или в соответствующем приближении;
- работать с естественнонаучной (физической) информацией, содержащейся в сообщениях СМИ, ресурсах Интернета, научно-популярных статьях: владеть методами поиска, выделять смысловую основу и оценивать достоверность информации.

Владеть:

– умениями применять полученные знания для адекватного объяснения квантовых явлений окружающего мира.

Иметь опыт:

– при помощи фундаментальных законов квантовой физики доказывать существование причинно-следственных связей между квантовыми природными явлениями и объяснять соответствующие явления в окружающем мире.

- 4. Формат обучения контактный.
- **5. Объем** дисциплины (модуля) составляет 4 з.е., в том числе 68 академических часов, отведенных на контактную работу обучающихся с преподавателем (аудиторная нагрузка), 76 академических часов на самостоятельную работу обучающихся.
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

6.1. Структура дисциплины (модуля) по темам (разделам) с указанием отведен-

ного на них количества академических часов и виды учебных занятий.

Наименование	Номинальные трудозатраты обучающегося				
разделов и тем дисциплины (модуля), Форма промежуточной аттестации по дисциплине (моду-	(работа действии ват Виды к работы, ски	ная работа во взаимо- и с препода- елем) онтактной академиче- е часы	Самостоятельная ра- бота обучающегося, академические часы	Всего академических часов Форма текущего контроля успе- ваемости (наименование)	
лю)	Занятия лек- ционного ти- па*	Занятия се- минарского типа*		Всего ак	Форма теку
Квантовые свойства излучения 1.1. Законы теплового излучения. Квантовая теория излучения. 1.2. Фотонный газ и его свойства. Квантовая оптика. Корпускулярноволновой дуализм света	Кон- сульта- ции, 5	Решение задач, 5	9	19	-
Волновые свойства частиц 2.1. Гипотеза де Бройля. Экспериментальные подтверждения гипотезы де Бройля 2.2. Волновой пакет. Соотношения неопределенностей.	Кон- сульта- ции, 5	Решение задач, 6	10	21	-
Основные посту- <u>латы квантовой</u> <u>механики</u> 3.1. Волновая функция. Принцип суперпозиции.	Кон- сульта- ции, 5	Решение задач, 6	10	21	Контрольная работа

					.
Уравнение Шре-					
дингера. Вектор					
плотности потока					
вероятности.					
3.2. Представление					
физических вели-					
-					
чин операторами.					
Собственные					
функции и соб-					
ственные значения					
операторов.					
3.3. Измерения фи-					
зических величин					
в квантовых си-					
стемах.					
Стационарные за-	Кон-	Решение	10	21	-
дачи квантовой	сульта-	задач, 6			
механики	ции, 5				
4.1. Уравнение	ции, Э				
Шредингера для					
стационарных со-					
стояний. Частица в					
потенциальной яме					
· ·					
с непроницаемыми					
стенками.					
4.2. Движение ча-					
стицы в областях					
потенциального					
порога и потенци-					
ального барьера.					
4.3. Потенциальная					
яма конечной глу-					
бины. Квантовый					
гармонический					
осциллятор.					
Квантовая теория	Кон-	Решение	10	21	_
атома	сульта-	задач, 6		21	
 5.1. Квантовые 	_	задач, о			
свойства атомов.					
	ции, 5				
	ции, 5				
Теория Бора атома	ции, 5				
Теория Бора атома водорода.	ции, 5				
Теория Бора атома водорода. 5.2. Квантово-	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое опи-	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородопо-	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов.	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл.	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна -	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл.	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна -	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужден-	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужденное излучение	ции, 5				
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужденное излучение атомов.		Решециа	Q	19	Контрольцая
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужденное излучение атомов. Квантовые стати-	Кон-	Решение	9	19	Контрольная
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужденное излучение атомов. Квантовые статистические распре-	Кон-	Решение задач, 5	9	19	Контрольная работа
Теория Бора атома водорода. 5.2. Квантовомеханическое описание водородоподобных атомов. Квантовые числа и их физический смысл. 5.3. Опыт Штерна - Герлаха. Гипотеза о спине электрона. Атом в магнитном поле. Вынужденное излучение атомов. Квантовые стати-	Кон-		9	19	-

	T				I
механическое опи-					
сание системы					
многих частиц.					
Атом гелия. Мно-					
гоэлектронные					
атомы					
6.2. Распределение					
Бозе-Эйнштейна.					
Распределение					
Ферми-Дирака					
6.3. Электронный					
газ в металлах					
Эмиссия электро-					
нов из металла					
Компьютерное мо-	Кон-	_	10	14	-
<u>делирование</u>	сульта-				
в квантовой физи-	ции, 4				
<u>ке</u>	. ,				
(обзорная лекция)					
Другие виды са-	-	_	-	-	-
мостоятельной					
работы (при					
наличии): напри-					
мер,					
курсовая работа,					
творческая рабо-					
та (эссе)					
14 (3000)	34	34	68	76	
Проможентоннов	J +	J -1	8	70	
Промежуточная			O		
аттестация (экза-					
мен)				1.1.1	
Итого				144	

6.2. Содержание разделов (тем) дисциплины.

№ п/п	Наименование разделов (тем) дисциплины	Содержание разделов (тем) дисциплин		
Лекции				
1.	Законы теплового излучения. Квантовая	Характеристики теплового излучения.		
	теория излучения.	Закон Кирхгофа. Закон Стефана — Больцма-		
		на. Закон смещения Вина. Объемная плот-		
		ность энергии равновесного излучения. Фор-		
		мула Рэлея — Джинса. Принципиальные		
		внутренние противоречия в классической фи-		
		зике. Гипотеза о квантах. Формула Планка.		
2.	Фотонный газ и его свойства. Квантовая	Фотонная теория излучения. Опыт Бо-		
	оптика. Корпускулярно-волновой дуализм	те. Уравнение состояния фотонного газа.		
	света.	Термодинамические характеристики фотон-		
		ного газа. Тепловое излучение Вселенной.		
		Фотоэффект. Эффект Комптона. Корпус-		
		кулярно-волновой дуализм света.		
3.	Гипотеза де Бройля. Экспериментальные	Волновые свойства частиц. Кор-		
	подтверждения гипотезы де Бройля.	пускулярно-волновой дуализм материи.		
		Свойства волн де Бройля. Расчет длины		
		волны де Бройля для нерелятивистских и		
		релятивистских частиц. Преломление		
		электронных волн в металле. Опыт Дэ-		

		виссона и Джермера. Дифракция электро-
		нов на поликристаллах. Дифракция оди-
		ночных электронов. Эффект Рамзауэра.
		Опыты по дифракции нейтронов и пучков
		частиц.
4.	Волновой пакет. Соотношения неопреде-	Свойства микрочастиц. Волновой па-
	ленностей.	кет. Расплывание и редукция волнового паке-
		та. Соотношение неопределенностей Гейзен-
		берга. Следствия из соотношения неопреде-
		ленностей.
5.	Волновая функция. Принцип суперпози-	Особенности описания движения
	ции. Уравнение Шредингера. Вектор плот-	частиц в квантовой механике. Свойства
	ности потока вероятности.	волновой функции. Принцип суперпози-
		ции квантовых состояний. Уравнение
		Шредингера. Плотность потока вероятно-
		сти.
6.	Представление физических величин опера-	Квантово-механические операторы
	торами. Собственные функции и собствен-	физических величин. Уравнение на собствен-
	ные значения операторов.	ные значения и собственные функции опера-
		торов. Основные свойства собственных
		функций. Спектры собственных значений
		операторов.
7.	Измерения физических величин в кванто-	Квантовый ансамбль. Одновременное
	вых системах.	измерение разных физических величин.
Семин	ары	
1.	Уравнение Шредингера для стационарных	Разделение переменных в уравнении
	состояний. Частица в потенциальной яме с	Шредингера. Волновые функции частицы в
	непроницаемыми стенками.	одномерной потенциальной яме. Трехмерная
		потенциальная яма.
2.	Движение частицы в областях потенци-	Отражение частицы от потенциально-
	ального порога и потенциального барьера.	го порога. Прохождение частицы через по-
		тенциальный барьер (туннельный эф-
		фект). Холодная эмиссия электронов из
		металла. Квантовая природа альфа-
		распада ядер.
3.	Потенциальная яма конечной глубины.	Одномерная потенциальная яма с од-
	Квантовый гармонический осциллятор.	ной бесконечно высокой стенкой. Прямо-
		угольная потенциальная яма конечной глуби-
		ны. Квантование энергии гармонического осциллятора
	T	и его волновые функции.
4.	Квантовые свойства атомов. Теория Бора	Излучение атомов. Опыт Франка -
	атома водорода.	Герца. Постулаты Бора. Планетарная мо-
		дель атома водорода. Квантование энер-
		гии атома. Объяснение спектра атома во-
		дорода.
5.	Квантово-механическое описание водоро-	Водородоподобный атом без учета
	доподобных атомов. Квантовые числа и их	спина. Квантование энергии и волновые
	физический смысл.	функции атома. Главное, орбитальное
		(азимутальное) и магнитное квантовые
		числа. Формула пространственного кван-
		тования.
6.	Опыт Штерна - Герлаха. Гипотеза о спине	Схема опыта Штерна - Герлаха.
	электрона. Атом в магнитном поле. Вы-	Спин электрона. Спин-орбитальное взаи-
	нужденное излучение атомов.	модействие. Магнитный момент атома.
		Эффект Зеемана. Электронный парамаг-
		уффект эсемана. Электронный парамат-

		нитный резонанс. Квантовая теория рав-		
		новесного излучения. Среды с инверсной		
		заселенностью энергетических уровне		
		Квантовые усилители и генераторы.		
7.	Квантово-механическое описание системы	Неразличимость тождественных частиц в		
	многих частиц. Атом гелия.	квантовой механике. Симметричные и анти-		
		симметричные состояния. Бозоны и фермио-		
		ны. Волновая функция системы невзаимодей-		
		ствующих частиц. Принцип Паули. Атом		
		гелия.		

7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Текущий контроль успеваемости осуществляется путём самостоятельного решения задач домашних контрольных работ и самостоятельной разработки студентом реферата на выбранную тему и его публичной защиты. Указанные работы выполняются в свободное от обязательных учебных занятий время (во внеаудиторное время) под руководством преподавателя.

Примерная тематика рефератов:

- 1) Непрерывное и дискретное.
- 2) Теория фотоэффекта.
- 3) Туннельный эффект и соотношение неопределенностей.
- 4) Сканирующий туннельный микроскоп.
- 5) Обменное взаимодействие.
- 6) Закон сохранения четности.
- 7) Правила отбора.
- 8) Пространственные распределения ("орбиты") электрона в атоме водорода.
- 9) Рентгеновские спектры.
- 10) ЯМР-томография.
- 11) Электронный парамагнитный резонанс.
- 12) Ядерный магнитный резонанс.
- 13) Сверхпроводимость и сверхтекучесть.
- 14) Сложение моментов количества движения.
- 15) Эффект Штарка.
- 16) Квантовая телепортация.
- 17) Чистые и смешанные состояния в квантовой механике.

7.2 Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

- для экзамена

Вопросы к экзамену:

- 1. Тепловое излучение. Излучательная и поглощательная способность вещества и их соотношение. Объёмная плотность излучения.
 - 2. Модель абсолютно черного тела. Закон Стефана-Больцмана. Закон смещения Вина.
 - 3. Термодинамика равновесного теплового излучения. Формула Рэлея-Джинса.
- 4. Ограниченность классической теории излучения. Элементы квантового подхода. Формула Планка.
- 5. Основные представления о квантовой теории излучения света атомами и молекулами. Квантование светового поля. Модель двухуровневой системы.

- 6. Взаимодействие двухуровневой системы с излучением: спонтанные и вынужденные переходы. Коэффициенты Эйнштейна.
 - 7. Явления, противоречащие классической теории излучения. Законы фотоэффекта.
 - 8. Формула Эйнштейна для фотоэффекта. Тормозное рентгеновское излучение.
 - 9. Фотоны: опыты Боте и Боте-Гейгера. Эффект Комптона.
- 10. Инверсная заселенность уровней. Квантовые усилители оптического излучения. Лазеры. Принципы работы рубинового, гелий-неонового лазеров.
 - 11. Модели атома. Ядерная (планетарная) модель, её недостатки. Опыты Резерфорда.
- 12. Опыты Франка-Герца. Постулаты Бора. Спектральные особенности излучения атома водорода: формула Бальмера.
- 13. Корпускулярно-волновой дуализм. Опытное подтверждение волновых свойств частиц: опыты Дэвиссона-Джермера, Томсона-Тартаковского, Фабриканта-Вибермана-Сушкина. Волны де-Бройля, интерференция электронов.
- 14. Основные постулаты квантовой теории, постановка задачи. Волновая функция, её статистический смысл. Полное описание состояния, полный набор физических величин.
- 15. Принцип измерения в квантовой механике, соотношение неопределенностей. Понятие одновременной измеримости физических величин.
- 16. Принцип суперпозиции. Основные свойства волновой функции. Непрерывный и дискретный спектры. Нормировки волновых функций.
- 17. Операторы физических величин. Собственные значения и собственные функции операторов. Физический смысл эрмитовости оператора. Спектры собственных значений операторов.
- 18. Среднее значение физической величины в квантовой механике. Соотношение между собственными функциями операторов одновременно измеримых физических величин.
 - 19. Слож. и умнож. операторов. Коммутат-ть операторов. Полн. набор (полн. изм-ие).
 - 20. Гамильтониан. Основное (волновое) уравнение квантовой механики.
- 21. Дифференцирование операторов по времени. Стационарные состояния. Вырожденные уровни стационарных состояний.
 - 22. Финитные (связанные) и инфинитные движения, связь со спектром.
- 23. Матрицы физических величин. Умножение матриц. Дифференцирование матриц по времени. Физический смысл эрмитовости матриц в квантовой механике. Физический смысл диагональности матриц.
- 24. Оператор импульса. Собственные значения и собственные функции оператора импульса. Коммутаторы, включающие компоненты импульса. Соотношение неопределенностей.
- 25. Момент импульса. Правила коммутации для момента и его компонент. Собственные значения момента и проекций момента импульса. Собственные функции момента импульса. Правила отбора по моменту.
 - 26. Уравнение Шредингера. Плотность потока вероятности и уравнение неразрывности.
 - 27. Общие свойства решений уравнения Шредингера.
 - 28. Потенц. яма. Потенциальная стенка. Потенциальный барьер. Туннельный эффект.
 - 29. Центрально-симметричное поле. Атом водорода. Вырожденность уровней.
 - 30. Линейный осциллятор. Ротатор.
 - 31. Сложение моментов. Спин. Опыт Штерна-Герлаха.
 - 32. Эффект Зеемана. Электронный парамагнитный резонанс.
 - 33. Тождественность частиц. Фермионы и бозоны.
 - 34. Атом гелия.
 - 35. Распределение Бозе-Эйнштейна.
 - 36. Распределение Ферми-Дирака.
 - 37. Электронный газ в металлах.
 - 38. Электронная эмиссия из металла.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)				
Оценка	2	3	4	5
РО и				
соответствующие				
виды оценочных средств				

Знания	Отсутствие	Фрагментарные	Общие, но не структу-	Сформированные
(домашние задания, рефераты)	знаний	знания	рированные знания	систематические
				знания
Умения	Отсутствие	В целом успеш-	В целом успешное, но	Успешное и систе-
(контрольные работы)	умений	ное, но не си-	содержащее отдельные	матическое умение
		стематическое	пробелы умение (до-	
		умение	пускает неточности	
			непринципиального	
			характера)	
Навыки	Отсутствие	Наличие отдель-	В целом, сформиро-	Сформированные
(владения, опыт деятельности)	навыков	ных навыков	ванные навыки (владе-	навыки (владения),
(экзамен)	(владений,	(наличие фраг-	ния), но используемые	применяемые при
	опыта)	ментарного опы-	не в активной форме	решении задач
		та)		

8. Ресурсное обеспечение:

Перечень основной и дополнительной литературы.

- 1. Сивухин Д.В. Курс общей физики: в 5 т. Т 5, ч. 1 / Д.В. Сивухин. 2-е изд. стер. М.: Физматлит, 2002. 784 с.
- 2. Иродов И.Е. Квантовая физика. Основные законы / И.Е. Иродов. 7-е изд. М.: Лаборатория знаний, 2017. 261 с.
- 3. Иродов И.Е. Физика макросистем. Основные законы / И.Е. Иродов. 6-е изд. М.: Лаборатория знаний, 2015.-210 с.
- 4. Иродов И.Е. Задачи по квантовой физике / И.Е. Иродов. 5-е изд. М.: Лаборатория знаний, 2015. 220 с.
- 5. Гуляев А.В., Красильников С.С., Попов А.М., Тихонова О.В. Сто одиннадцать задач по атомной физике / А.В. Гуляев, С.С. Красильников, А.М. Попов, О.В. Тихонова. М.: Московский государственный университет имени М. В. Ломоносова, 2012. 196 с.
- 6. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: в 10 т. Т 2 / Л.Д. Ландау, Е.М. Лифшиц. 8-е изд. стер. М.: Физматлит, 2006. 536 с.
- 7. Блохинцев Д.И. Основы квантовой механики / Д.И. Блохинцев 7-е изд. стер. М.: Лань, 2004. 672 с.

- Описание материально-технического обеспечения.

Учебный кабинет №173, $(40,71 \text{м}^2)$ Учебных столов -9 шт., стульев -19 шт., 3-х створчатая доска для мела -1 шт., Стол для преподавателя -1 шт. Стационарный экран для проектора -1 шт.

9. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в общей характеристике ОПОП.

10. Язык преподавания русский.

11. Преподаватель (преподаватели).

Доцент кафедры физики и геофизики, кандидат физико-математических наук <u>Павел Анато-льевич Французов</u>.

12. Автор (авторы) программы.

Доцент кафедры физики и геофизики, кандидат физико-математических наук <u>Павел Анато-</u> <u>льевич Французов</u>.

ОФОРМЛЕНИЕ ЭКЗАМЕНАЦИОННОГО БИЛЕТА ДЛЯ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ, ПРОВОДИМОЙ В ФОРМЕ УСТНОГО ЭКЗАМЕНА

Формат (в зависимости от количества вопросов, наличия или отсутствия задач и т.п.) А-5 или А-6

ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО					
УНИВЕРСИТЕТА имени М.В. ЛОМОНОСОВА в г. СЕВАСТОПОЛЕ					
Направление <u>03.03.02 Физика</u>					
(шифр (шифры) и название (названия) направления (направлений) подготовки)					
Учебная дисциплина Введение в квантовую физику					
Семестр 4					
Экзаменационный билет № 1					
1.					
Модель абсолютно черного тела. Закон Стефана-Больцмана. Закон смещения Вина.					
2. Основные постулаты квантовой теории, постановка задачи. Волновая функция, её статистический смысл. Полное описание состояния, полный набор физических величин.					
3. Тождественность частиц. Фермионы и бозоны.					
Утверждено на заседании кафедры, протокол № от «» 20 г.					
Зав. кафедрой (Ф.И.О)					
Преподаватель (Ф.И.О.)					